Primitive elements and irreducible polynomials of GF(256)

by Cody Planteen
https://codyplanteen.com/notes/rs

July 26, 2019

Intro

The finite field (also known as a Galois field) with 256 elements is sometimes written with the following notation \mathbb{F}_{256} by mathematicians. Engineers and computer scientists often write $\mathrm{GF}(256)$ instead, which will be used for the rest of this paper. $\mathrm{GF}(256)$ is created by splitting the binary field $\mathrm{GF}(2)$ with a monic irreducible polynomial of degree 8 to form a field with 256 entries. A monic polynomial is a polynomial of a single variable with the coefficient of the highest degree being one.

Number of irreducible polynomials

The number of irreducible polynomials are given by Gauss's formula [Chebolu]:
$\frac{1}{n}\left(\sum_{d \mid n} \mu(n / d) q^{d}\right)$
The notation $d \mid n$ means the set of all positive divisors of n including 1 and n .
$\mu(x)$ is the Möbius function. This function is defined such that $\mu(1)=1$.
For other values of x , it has the following properties:
$\mu(x)=1$ if the prime factorization of x that is square-free (no prime factors with an exponent greater than one) and an even number of prime factors.
$\mu(x)=-1$ if the prime factorization of x that is square-free (no prime factors with an exponent greater than one) and an odd number of prime factors.
$\mu(x)=0$ if the prime factorization of x has a squared prime factor (a prime factor with an exponent greater than one)

Using the above definitions:
$\mu(2)=-1$ since the prime factorization of 2 is 2 which is square-free with an odd number of factors
$\mu(4)=0$ since the prime factorization of 4 is 2^{2} has a squared prime factor

Number of irreducible polynomials in GF(256)

For $\operatorname{GF}(256)=\operatorname{GF}\left(2^{8}\right)$, the number of irreducible polynomials with Gauss's formula $\mathrm{q}=2$ and $\mathrm{n}=8$:
$\frac{1}{8}\left(\sum_{d \mid 8} \mu(8 / d) 2^{d}\right)$
$=\frac{1}{8}\left(\sum_{d \in\{1,2,4,8\}} \mu(8 / d) 2^{d}\right)$
$=\frac{1}{8}\left(\mu(8 / 1) 2^{1}+\mu(8 / 2) 2^{2}+\mu(8 / 4) 2^{4}+\mu(8 / 8) 2^{8}\right)$
$=\frac{1}{8}\left(\mu(8) 2^{1}+\mu(4) 2^{2}+\mu(2) 2^{4}+\mu(1) 2^{8}\right)$
$=\frac{1}{8}\left(-2^{4}+2^{8}\right)$
$=\frac{1}{8}(240)$
$=30$
So there are 30 irreducible polynomials splitting $\operatorname{GF}(2)$ into $\operatorname{GF}(256)$.

Minimum primitive element

Call α the minimum primitive element of $\operatorname{GF}\left(2^{8}\right)$. By raising α to successive powers, all non-zero elements of the field are generated: $\left\{\alpha^{0}, \alpha^{1}, \alpha^{2}, \ldots, \alpha^{254}\right\}$.
The below table gives all irreducible polynomials in $\operatorname{GF}(256)$ in algebraic, decimal, and hexadecimal format along with the minimum element α in algebraic and decimal format.

The irreducible polynomials were found using Wolfram Alpha by entering the expression GF (256) and expanding the "characteristic polynomial" view. Algorithms for finding irreducible polynomials are given by [Kerl]. The minimum primitive element was found by a C++ program which sequentially tested elements until finding one that generated the entire field.

Table 1: GF(256) irreducible polynomials

Irreducible polynomial	Poly (dec)	Poly (hex)	Min primitive element	Elem (dec)
$x^{8}+x^{4}+x^{3}+x+1$	283	0x11B	$x+1$	3
$x^{8}+x^{4}+x^{3}+x^{2}+1$	285	0x11D	x	2
$x^{8}+x^{5}+x^{3}+x+1$	299	0x12B	x	2
$x^{8}+x^{5}+x^{3}+x^{2}+1$	301	0x12D	x	2
$x^{8}+x^{5}+x^{4}+x^{3}+1$	313	0x139	$x+1$	3
$x^{8}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$	319	0x13F	$x+1$	3
$x^{8}+x^{6}+x^{3}+x^{2}+1$	333	0x14D	x	2
$x^{8}+x^{6}+x^{4}+x^{3}+x^{2}+x+1$	351	0x15F	x	2
$x^{8}+x^{6}+x^{5}+x+1$	355	0x163	x	2
$x^{8}+x^{6}+x^{5}+x^{2}+1$	357	0x165	x	2
$x^{8}+x^{6}+x^{5}+x^{3}+1$	361	0x169	x	2
$x^{8}+x^{6}+x^{5}+x^{4}+1$	369	0x171	x	2
$x^{8}+x^{6}+x^{5}+x^{4}+x^{2}+x+1$	375	0x177	$x+1$	3
$x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+x+1$	379	0x17B	$x^{3}+1$	9
$x^{8}+x^{7}+x^{2}+x+1$	391	0x187	x	2
$x^{8}+x^{7}+x^{3}+x+1$	395	0x18B	$x^{2}+x$	6
$x^{8}+x^{7}+x^{3}+x^{2}+1$	397	0x18D	x	2
$x^{8}+x^{7}+x^{4}+x^{3}+x^{2}+x+1$	415	0x19F	$x+1$	3
$x^{8}+x^{7}+x^{5}+x+1$	419	0x1A3	$x+1$	3
$x^{8}+x^{7}+x^{5}+x^{3}+1$	425	0x1A9	x	2
$x^{8}+x^{7}+x^{5}+x^{4}+1$	433	0x1B1	$x^{2}+x$	6
$x^{8}+x^{7}+x^{5}+x^{4}+x^{3}+x^{2}+1$	445	0x1BD	$x^{2}+x+1$	7
$x^{8}+x^{7}+x^{6}+x+1$	451	0x1C3	x	2
$x^{8}+x^{7}+x^{6}+x^{3}+x^{2}+x+1$	463	0x1CF	x	2
$x^{8}+x^{7}+x^{6}+x^{4}+x^{2}+x+1$	471	0x1D7	$x^{2}+x+1$	7
$x^{8}+x^{7}+x^{6}+x^{4}+x^{3}+x^{2}+1$	477	0 x 1 DD	$x^{2}+x$	6
$x^{8}+x^{7}+x^{6}+x^{5}+x^{2}+x+1$	487	0x1E7	x	2
$x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x+1$	499	0x1F3	$x^{2}+x$	6
$x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{2}+1$	501	0x1F5	x	2
$x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+1$	505	0x1F9	$x+1$	3

Number of primitive elements

Consider a term $\gamma=\alpha^{n}$. If γ raised to successive integer powers generates $\left\{\gamma^{0}, \gamma^{1}, \gamma^{2}, \ldots, \gamma^{254}\right\}$ all non-zero elements of the field, the γ is also a primitive element.

The number of primitive elements for $\mathrm{GF}(\mathrm{q})$ is given as $\phi(q-1)$ where ϕ is Euler's totient function [Kaliski].
$\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$
where $p \mid n$ gives the distinct prime factors of n For GF (256):
$\phi(256-1)$
$=\phi(255)$
$=255 \prod_{p \mid 255}\left(1-\frac{1}{p}\right)$
$=255 \prod_{p \in\{3,5,17\}}\left(1-\frac{1}{p}\right)$
$=255\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{17}\right)$
$=128$
There are 128 primitive elements of $\mathrm{GF}(256)$.

Table of primitive elements

This table of primitive elements was found by a C++ program which took the minimum primitive element for each of the 30 irreducible polynomails in GF(256) and tested each power greater than 0 to see if it generated each field element. The same values occur in all 30 irreducible polynomials.

Table 2: 128 primitive elements of $\mathrm{GF}(256)$

α^{1}	α^{64}	α^{128}	α^{193}
α^{2}	α^{67}	α^{131}	α^{194}
α^{4}	α^{71}	α^{133}	α^{196}
α^{7}	α^{73}	α^{134}	α^{197}
α^{8}	α^{74}	α^{137}	α^{199}
α^{11}	α^{76}	α^{139}	α^{202}
α^{13}	α^{77}	α^{142}	α^{203}
α^{14}	α^{79}	α^{143}	α^{206}
α^{16}	α^{82}	α^{146}	α^{208}
α^{19}	α^{83}	α^{148}	α^{209}
α^{22}	α^{86}	α^{149}	α^{211}
α^{23}	α^{88}	α^{151}	α^{212}
α^{26}	α^{89}	α^{152}	α^{214}
α^{28}	α^{91}	α^{154}	α^{217}
α^{29}	α^{92}	α^{157}	α^{218}
α^{31}	α^{94}	α^{158}	α^{223}
α^{32}	α^{97}	α^{161}	α^{224}
α^{37}	α^{98}	α^{163}	α^{226}
α^{38}	α^{101}	α^{164}	α^{227}
α^{41}	α^{103}	α^{166}	α^{229}
α^{43}	α^{104}	α^{167}	α^{232}
α^{44}	α^{106}	α^{169}	α^{233}
α^{46}	α^{107}	α^{172}	α^{236}
α^{47}	α^{109}	α^{173}	α^{239}
α^{49}	α^{112}	α^{176}	α^{241}
α^{52}	α^{113}	α^{178}	α^{242}
α^{53}	α^{116}	α^{179}	α^{244}
α^{56}	α^{118}	α^{181}	α^{247}
α^{58}	α^{121}	α^{182}	α^{248}
α^{59}	α^{122}	α^{184}	α^{251}
α^{61}	α^{124}	α^{188}	α^{253}
α^{62}	α^{127}	α^{191}	α^{254}

Curiously, the sequence of exponent values $\{1,2,4,7,8,11,13,14,16,19,22,23,26,28,29,31, \ldots\}$ are non-multiples of Fermat numbers. A Fermat number is of the form $2^{2^{n}}+1$. This corresponds to On-Line Encyclopedia of Integer Sequences (OEIS) entry

A080308 [Sloane].

References

S. K. Chebolu and J. Mináč, "Counting irreducible polynomials over finite fields using the inclusion-exclusion principle," Mathematics Magazine, vol. 84, no. 5, pp. 369-371, 2011. https://arxiv.org/pdf/1001.0409.pdf

Kaliski B., "Primitive Element", Encyclopedia of Cryptography and Security, 2005.
J. Kerl, "Computation in finite fields," published electronically at https:// johnkerl.org/doc/ffcomp.pdf, July 2019.
N. J. A. Sloane, editor, "The On-Line Encyclopedia of Integer Sequences," published electronically at https://oeis.org/A080308, July 2019.

