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Intro

The finite field (also known as a Galois field) with 256 elements is sometimes
written with the following notation Fa5¢ by mathematicians. Engineers and
computer scientists often write GF(256) instead, which will be used for the rest
of this paper. GF(256) is created by splitting the binary field GF(2) with a
monic irreducible polynomial of degree 8 to form a field with 256 entries. A
monic polynomial is a polynomial of a single variable with the coefficient of the
highest degree being one.

Number of irreducible polynomials

The number of irreducible polynomials are given by Gauss’s formula [Chebolu]:
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The notation d|n means the set of all positive divisors of n including 1 and n.
w(z) is the Mobius function. This function is defined such that p(1) = 1.
For other values of x, it has the following properties:

wu(x) = 1 if the prime factorization of x that is square-free (no prime factors
with an exponent greater than one) and an even number of prime factors.

p(z) = —1 if the prime factorization of x that is square-free (no prime factors
with an exponent greater than one) and an odd number of prime factors.

u(xz) = 0 if the prime factorization of x has a squared prime factor (a prime
factor with an exponent greater than one)

Using the above definitions:

1(2) = —1 since the prime factorization of 2 is 2 which is square-free with an
odd number of factors

p(4) = 0 since the prime factorization of 4 is 22 has a squared prime factor



Number of irreducible polynomials in GF(256)

For GF(256) = GF(2%), the number of irreducible polynomials with Gauss’s
formulaq =2 and n = 8:
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So there are 30 irreducible polynomials splitting GF(2) into GF(256).
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Minimum primitive element

Call a the minimum primitive element of GF(28). By raising o to successive

powers, all non-zero elements of the field are generated: {a®,al,a?,... o254},

The below table gives all irreducible polynomials in GF(256) in algebraic, dec-
imal, and hexadecimal format along with the minimum element « in algebraic
and decimal format.

The irreducible polynomials were found using Wolfram Alpha by entering the
expression GF(256) and expanding the “characteristic polynomial” view. Algo-
rithms for finding irreducible polynomials are given by [Kerl]. The minimum
primitive element was found by a C++ program which sequentially tested ele-
ments until finding one that generated the entire field.



Table 1: GF(256) irreducible polynomials

Irreducible polynomial Poly (dec) Poly (hex) Min primitive element Elem (dec)
B+t +ad o+l 283 0x11B z+1 3
B4t +a?+1 285 0x11D T 2
B+ ad+d+a+1 299 0x12B T 2
B4 ad 2?41 301 0x12D T 2
2+t 341 313 0x139 z+1 3
bttt 422+ +1 0 319 0x13F z+1 3
B4 aS+ a3 +a?2+1 333 0x14D T 2
Bt aS it a4+ +1 351 0x15F x 2
P+t +ad+r+1 355 0x163 x 2
2+ a0 +2° + 2241 357 0x165 x 2
¥+t a3+l 361 0x169 x 2
B4 aS+ad+at+1 369 0x171 x 2
B4+t +r+1 375 0x177 x+1 3
B4+ttt 41 379 0x17B 241 9
B4+ 2+ +1 391 0x187 T 2
P+t 395 0x18B 2?2+ 6
B+’ +d+a?+1 397 0x18D T 2
Bttt +1 415 0x19F z+1 3
B4+t a1 419 0x1A3 rz+1 3
4"+t 41 425 0x1A9 T 2
4"+t 41 433 0x1B1 2?4+ 6
B4+t S+ 22 +1 445 0x1BD 22 +r+1 7
B+’ + S+ +1 451 0x1C3 x 2
B4+t +1 463 0x1CF T 2
4+’ +ab+rt+ 41 471 0x1D7 4z +1 7
4"+t 322 4+1 477 0x1DD 2+ 6
2"+ b4+ 1 487 0x1E7 x 2
B+’ at 41 499 0x1F3 22+ 6
B4+t +224+1 501 0x1F5 T 2
22"+ ad+t+ 23 +1 505 0x1F9 r+1 3

Number of primitive elements

Consider a term v = «o”. If v raised to successive integer powers generates
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element.

all non-zero elements of the field, the «y is also a primitive

The number of primitive elements for GF(q) is given as ¢(q — 1) where ¢ is

Euler’s totient function [Kaliski].
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where p|n gives the distinct prime factors of n

For GF(256):

$(256 — 1)
= ¢(255)
= 255 H (1 - 1)

p|255 p
= 255 H (1 - 1)

pe{3,5,17} p

1 1 1

:255<1‘3> (1—5) (1-17)
— 128

There are 128 primitive elements of GF(256).



Table of primitive elements

This table of primitive elements was found by a C++ program which took
the minimum primitive element for each of the 30 irreducible polynomails in
GF(256) and tested each power greater than 0 to see if it generated each field
element. The same values occur in all 30 irreducible polynomials.

Table 2: 128 primitive elements of GF(256)
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Curiously, the sequence of exponent values {1,2,4,7,8,11,13, 14,16, 19, 22,23,26,28,29,31,... }
are non-multiples of Fermat numbers. A Fermat number is of the form 22" + 1.
This corresponds to On-Line Encyclopedia of Integer Sequences (OEIS) entry



A080308 [Sloane].
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